Bienvenue sur le nouveau site internet multilingue de la Ville d’Ain Défali ----- Welcome to the new multilingual website of the City of Ain Defali ----- ברוכים הבאים לאתר הרב לשוני החדש של העיר עין דפאלי ----- 欢迎来到市艾因Defali的新的多语种网站 ----- Bienvenido a la nueva página web multilingüe de la ciudad de Ain Defali ------ Benvenuti nel nuovo sito web multilingue del Comune di Ain Defali ----- Welkom op de nieuwe meertalige website van de stad Ain Defali ----- Добро пожаловать на новый многоязычный сайт города Айн Defali ----- Ain Defali Belediyesinin yeni dilli web sitesine hoş geldiniz-----आइन Defali के सिटी की नई बहुभाषी वेबसाइट में आपका स्वागत है

مرحبا بكم فى موقع متعدد اللغات الجديد لمدينة عين الدفالى، وهي بلدة صغيرة لطيفة لزيارة ومنطقة مضيافة رائعة
Bienvenu(e) sur le portail de la ville d’Ain Défali Ce site se veut une vitrine ouverte sur le monde pour faire connaître notre ville Ce site est également une invitation à la découverte de notre richesse patrimoniale et environnementale.
Découvrez son histoire, son patrimoine, son actualité au quotidien et effectuez vos démarches administratives ...

Venez découvrir le grand marché hebdomadaire, le mercredi, l'un des plus réputés du Gharb, pour vous ravitailler de tout ce que vous voulez
Affichage des articles dont le libellé est L'interaction forte ou la colle super-gluon. Afficher tous les articles
Affichage des articles dont le libellé est L'interaction forte ou la colle super-gluon. Afficher tous les articles

L'interaction forte ou La colle super-gluon

L'interaction forte est responsable du confinement des protons et des neutrons dans les noyaux atomiques. Son intensité est considérable et elle dominerait toutes les autres forces de la nature si son rayon d'action n'était pas aussi minuscule (de l'ordre de la taille des noyaux atomiques, soit 10-15 mètre). Cela explique que dans un noyau, deux protons, de même charge Q positive, ne soient pas séparés violemment par la force électromagnétique: l'interaction forte est beaucoup plus puissante. 


En fait, l'interaction forte s'exerce plus fondamentalement entre les constituants des nucléons: les quarks (et les antiquarks). De la même manière que l'interaction électromagnétique n'agit que sur les particules possédant une charge Q non nulle, l'interaction forte n'agit que sur les particules portant une caractéristique baptisée "couleur". La théorie expliquant ce mécanisme s'appelle la chromodynamique quantique (car chromo = couleur) ou QCD. 

 La chromodynamique quantique

Les quarks et les antiquarks sont donc caractérisés par une couleur:
  • rougevert ou bleu (les 3 couleurs primaires) pour les quarks
  • cyanmagenta ou jaune (les 3 couleurs complémentaires correspondantes ou anticouleurs) pour les antiquarks

N'imaginez pas que ces particules soient colorées comme des boules de billard! ce terme poétique de couleur a été imaginé pour nommer une nouvelle charge qui ne concerne que l'interaction forte.
Chez les quarks d'un nucléon, tout va par trois: Les charges Q sont fractionnaires d'un tiers et surtout les nucléons ne portent pas de couleur particulière: ils sont blancs. Ce blanc ne peut être obtenu que si les trois quarks du nucléon sont tous d'une couleur différente. Comme en optique: 


ROUGE + VERT + BLEU = CYAN + MAGENTA + JAUNE = BLANC
A noter que la famille des leptons (électron, muon, tau et leur neutrino) est insensible à l'interaction forte et donc ces particules sont non colorées.
Quant aux quarks, les particules composites qu'ils forment par regroupement s'appellent les hadrons. Tous les ces hadrons sont donc sensibles à l'interaction forte et ils ont tous une charge de couleur nulle: ils sont donc blancs.

Ils peuvent être de deux types différents:
  • Les baryons qui contiennent 3 quarks de 3 couleurs différentes obéissent la règle suivante (les nucléons sont des baryons particuliers contenant des quarks u et d) :
quark rouge + quark vert + quark bleu = baryon neutre
          Les antibaryons contiennent 3 antiquarks de 3 anticouleurs et obéissent à la règle : 

antiquark cyan + antiquark magenta + antiquark jaune = antibaryon neutre
  • Les mésons (particules instables et très éphémaires) contiennent un quark d'une couleur primaire et un antiquark de la couleur complémentaire (l'anticouleur) correspondante:
quark rouge + antiquark cyan =méson neutre
quark vert + antiquark magenta =méson neutre
quark bleu + antiquark jaune =méson neutre

  Les gluons
L'interaction forte s'exerce par l'intermédiaire d'un boson ou particule médiatrice. Ce boson a été baptisé gluon et il en existe huit différents; chacun porteur d'une couleur et d'une anticouleur.
Comme les photons, ils sont de masse nulle et comme le graviton, ils n'ont encore jamais été détectés.
Un gluon est donc toujours associé à une couleur et à une anticouleur; lorsqu'il est échangé entre deux quarks, il va donc échanger les couleurs de ces derniers. Contrairement au photon médiateur qui ne change pas les charges Q des particules interagissantes, les gluons, eux, changent la couleur des quarks.


 Pourquoi 8 gluons ?
  • Dans un baryon (ou triplet de quarks), il existe 6 gluons reliant chaque couleur à chacune de ses deux couleurs complémentaires.
  • Dans un méson (ou duo quark-antiquark), il existe 2 gluons reliant une couleur à son anticouleur.
Il faut donc se représenter un nucléon comme une incessante transformation de 3 quarks s'échangeant en permanence des gluons. A un instant donné, les 3 quarks ont bien 3 couleurs différentes, mais ces couleurs vont constamment changer de propriétaires à tour de rôle.
  

Plus étonnant encore, vus de très près, les quarks d'un nucléon semblent libres. En revanche, s'ils s'éloignent les uns des autres, la force qui les lie augmente et ils ne peuvent sortir du nucléon. Quarks et gluons sont confinés à l'intérieur des baryons et des mésons. Donc deux quarks de couleurs différentes sont d'autant plus attirés l'un par l'autre qu'ils sont éloignés l'un de l'autre! C'est comme s'ils étaient reliés par un élastique. c'est le confinement des quarks.
On ne pourra donc jamais observer un quark isolé.


 la liaison inter-nucléon

L'interaction forte fondamentale s'exerce donc entre les quarks et les gluons d'un nucléon.
Ce qui lie entre eux les nucléons dans le noyau atomique, ce sont des "fuites" de gluons, de quarks et d'antiquarks. 


En 1937, le physicien japonais Hideki Yukawa propose que les liaisons entre protons ou neutrons se fassent par l'intermédiaire de particules appelés les mésons p (Pi). Ces mésons Pi seront effectivement détectés dix ans plus tard. En fait, nous savons maintenant que les mésons sont une association instable de quarks, d'antiquarks et des gluons nécessaires: Ces mésons sont en quelque sorte des fuites s'échappant du nucléon et interagissant avec le nucléon voisin: telle est l'interaction forte résiduelle agissant secondairement entre les nucléons par l'intermédiaire de mésons.