Lorsque l'on demande à un mathématicien de constituer une liste des nombres qui lui semblent les plus remarquables, il cite en général le nombre pi, puis le « nombre d'or », et enfin quelques autres plus « savants » comme e (base des logarithmes népériens), i (base des imaginaires purs) ou encore γ (constante d'Euler). Un peu curieusement, la racine carrée de 2, pourtant extraordinaire à plus d'un titre, est souvent oubliée.
La racine carrée de 2, une porte vers l'infini ?