Partie antérieure de l'encéphale des vertébrés, formée des hémisphères cérébraux et des structures qui les unissent.
Au sens strict, le cerveau, contenu et protégé par la boîte crânienne, est constitué par les deux hémisphères cérébraux (droit et gauche) et les fibres qui les relient. Dans le langage courant, il est souvent utilisé comme synonyme d'encéphale (l’ensemble des structures du système nerveux central incluses dans la boîte crânienne, soit, en fait : le tronc cérébral, le cervelet et le cerveau proprement dit).
Chacun de nos comportements relève d'une fonction du cerveau. L'esprit, la conscience, la pensée sont des aspects de l'activité cérébrale, comme le sont les actions de courir, de sourire, d'apprendre ou de souffrir. Inversement, les troubles des émotions, de la pensée ou des fonctions perceptives (→ sens) et motrices (→ motricité) caractérisent les maladies psychiques et neurologiques et résultent souvent de lésions, fonctionnelles ou organiques, du cerveau. Quelles règles lient l'anatomie et la physiologie du cerveau aux actions de percevoir ou d'agir ? Cette frontière de la connaissance de l'homme par lui-même est l'un des enjeux majeurs des neurosciences.
Le cerveau, objet de mythes, de légendes et de mystères, est depuis longtemps sujet de recherches. C'est un organe comme le cœur, le foie ou le rein. Certes, son organisation est d'une complexité sans égale, mais comme tous les tissus, il est composé de cellules, qui fonctionnent selon les lois communes à toutes les cellules. C'est leur spécialisation et leur organisation en réseaux qui déterminent la spécificité du cerveau et font de lui l'organe de la perception et de l'action, de la pensée et de la communication. Chez l'animal comme chez l'homme, il met en relation le monde intérieur et le monde extérieur.
1. L'étude du cerveau
L'étude d'un organe tel que le cerveau nécessite d'envisager d'abord le niveau de complexité auquel on s'intéresse. À l'échelle moléculaire et cellulaire, les cellules nerveuses expriment toute une gamme de spécificités qu'il s'agit de mettre en évidence. Ainsi, la transmission de l'information par les neurones se fait sous forme d'influx électrique (→ influx nerveux), le plus souvent depuis le corps cellulaire du neurone vers ses extrémités, converti en un signal chimique dans l'espace situé entre deux neurones, la synapse. L'étude de plusieurs neurones impliqués dans une même fonction fait passer à l'échelle de réseau, ou circuit, puis à une action spécialisée du cerveau, comme les mécanismes de l'apprentissage et de la mémoire, si l'analyse porte sur le circuit septo-hippocampique. Les méthodes et les concepts utilisés sont différents selon que l'on s'intéresse à une molécule ou à une fonction (psychologie).
Traditionnellement, les deux grandes branches complémentaires de la neurobiologie sont l'anatomie et la physiologie. La première décrit les différents éléments du cerveau et la façon dont ils sont assemblés, la seconde cherche à savoir comment ils fonctionnent. En fait, les techniques actuelles rendent assez artificielles et caduques ces distinctions. Il n'est toutefois pas sans intérêt de retracer quelques-unes des étapes fondamentales par lesquelles s'est construite la connaissance de la structure du cerveau.
1.1. Études anatomiques
1.1.1. Premières observations
Les techniques de dissection et d'analyse à l'œil nu du cerveau existent depuis les travaux de l'école d'Alexandrie (Hérophile, Érasistrate) au iiie s. Dès cette époque sont décrits les hémisphères avec leurs cavités (les ventricules) et les circonvolutions qui plissent leur surface. Ces travaux vont bouleverser la conception du corps humain jusque-là fondée, depuis Aristote et Hippocrate, sur l'idée que le cœur est le siège de la pensée, de l'action et le chef d'orchestre du corps. Hérophile montre que les nerfs sont distincts des vaisseaux et qu'ils sont issus du cerveau et de la moelle épinière(→ nerfs crâniens, nerfs rachidiens). Les médecins de l'Antiquité décrivent également des nerfs « du mouvement » et « de la sensation ». Enfin, observant que le cerveau humain est plus riche en circonvolutions que celui des animaux, ils suggèrent que le cortex cérébral pourrait être le siège de l'intelligence. Il faudra vingt sièclesen Europe pour retrouver puis dépasser ces connaissances.
1.1.2. Les neurones vus au microscope
C'est à la fin du xixe s. que les neuroanatomistes établissent que le neurone est l'unité fonctionnelle fondamentale du système nerveux, grâce à deux avancées technologiques : le microscope et la coloration argentique. Un neurone a la forme d’une sorte de « pieuvre » dont le corps ne mesure pas plus de 10 à 20 μm, mais qui étale des « tentacules », axones ou dendrites, jusqu'à 1 m de distance chez l’homme. De plus, les ramifications des différents neurones s'enchevêtrent pour former un feutrage dense et indistinct quand tous les neurones sont colorés.
Camillo Golgi, professeur d'histologie et de pathologie générale à l'université de Pavie (Italie), découvre vers 1875 une méthode, inspirée de la photographie, qui utilise le nitrate d'argent pour colorer une petite partie des neurones. Au microscope, chaque cellule colorée en surface devient ainsi distinguable du tissu environnant. Il était dès lors possible de dresser un catalogue des différents neurones et de leur organisation. Ce fut l'œuvre immense de Santiago Ramón y Cajal, qui fait encore souvent référence aujourd'hui, en particulier le classiqueHistologie du système nerveux de l'homme et des vertébrés (1904).
1.1.3. L'architecture du cerveau selon Cajal
Jusqu'à Cajal, les « réticularistes », pour lesquels les cellules nerveuses sont soudées les unes aux autres en un réseau continu, s'opposaient aux « cellularistes », selon lesquels chaque cellule nerveuse est individualisée. La seconde théorie n'expliquait pas le passage de l'information d'une cellule à l'autre. Cajal démontra sans ambiguïté cette individualité et l'existence d'une structure spécialisée au niveau de laquelle se font les échanges entre cellules, la synapse. De plus, par un travail expérimental immense, il put décrire une véritable architecture du cerveau mettant en évidence des séries d'interconnexions entre différentes régions et les circuits par lesquels se font ces liaisons.
1.1.4. Les techniques modernes d'exploration du cerveau
Si, au cours du xxe s., les méthodes neuroanatomiques ont peu varié, depuis 1950 elles se sont affinées à une vitesse impressionnante. Ici encore le progrès technologique est venu ouvrir de nouveaux horizons.
Les méthodes de coloration après destruction sélective ont montré des terminaisons nerveuses à de grandes distances du corps cellulaire ; puis les techniques ont utilisé les processus du transport d' acides aminés radioactifs (→ traceur), d'enzymes telles que la peroxydase du raifort (une plante vivace) ou encore de virus. Ainsi, aujourd'hui encore de nouvelles connexions entre les régions cérébrales sont découvertes.
Sur le plan de la structure fine du neurone et de la synapse, c'est la microscopie électronique et ses différentes variantes qui sont venues éclairer l' ultrastructure du neurone (son architecture intérieure). Très récemment, enfin, la microscopie confocale, combinaison de balayage laser et de reconstruction d'images par ordinateur, permet de compter le nombre de certaines molécules au niveau d'une région précise d'un neurone.
1.1.5. La visualisation du cerveau chez l’homme vivant
Les techniques de visualisation du cerveau chez l'homme vivant ont également connu des progrès majeurs. Les méthodes radiologiques actuelles recourent presque toutes à la reconstruction par ordinateur de multiples signaux obtenus soit à partir de rayons X (artériographie, tomodensitométrie ou scanographie), soit à partir de la mise en résonance des noyaux atomiques par champs magnétiques intenses (imagerie par résonance magnétique – IRM – ou résonance magnétique nucléaire – RMN), soit par émission de positons après injection d'une molécule préalablement marquée.
Ces techniques complémentaires permettent de visualiser sans danger la structure du cerveau avec une résolution de l'ordre du millimètre. Elles reconstituent les formes en trois dimensions et, pour les plus récentes, fournissent des indications (degré d'oxygénation, métabolisme glucidique…) sur le fonctionnement de certaines aires cérébrales (→ IRM fonctionnelle).
1.2. Études physiologiques
La structure dévoilée, il faut comprendre la fonction de chaque région cérébrale et les mécanismes par lesquels elle communique avec les autres. Au xviiie s., l'Italien Luigi Galvani découvre que les nerfs produisent de l'électricité. Un siècle plus tard, les physiologistes de l'école allemande, Emil Du Bois-Reymond et Hermann von Helmholtz en particulier, démontrent que les neurones utilisent cette électricité pour communiquer entre eux. Parallèlement,Claude Bernard invente la pharmacologie biochimique et, montrant qu'une drogue interagit avec un récepteur spécifique, pose les bases du concept de neurotransmission.
1.2.1. Circulation de l'information de neurone en neurone
Schématiquement, l'information circule au sein du neurone et le long de l'axone sous forme d'un potentiel d'action ; lorsque le potentiel atteint la terminaison présynaptique, il est traduit en intensité de libération d'une substance chimique, le neurotransmetteur, laquelle en se liant à des récepteurs spécifiques, sur le versant postsynaptique, induit dans le second neurone des modifications pouvant aboutir à la genèse de nouveaux potentiels d'action, ou au contraire à leur inhibition. Chaque neurone établit jusqu'à 500 000 connexions avec d'autres neurones, il est donc bien plus qu'un simple relais envoyant un signal à distance. À chaque instant le neurone modifie son état et son activité en synthétisant les multiples informations qu'il reçoit. Ces découvertes sont chaque jour obtenues à partir de deux grands groupes de techniques : l'électrophysiologie et la neuropharmacologie.
1.2.2. L'électrophysiologie
L’électrophysiologie enregistre les variations de courant électrique induites par les changements d'activité des neurones. On peut analyser un neurone isolément ou, au contraire, recueillir une activité globale. L'étude d'un seul neurone se fait grâce à des électrodes aux pointes extrêmement fines amenées à son contact. Il est même possible depuis quelques années d'enregistrer l'activité d'une seule molécule impliquée dans la circulation d'un ion déterminé (potassium, sodium, chlore, calcium) grâce à la technique du patch-clamp ; sa mise au point par Erwin Neher et Bert Sakmann a valu le prix Nobel à ces deux chercheurs en 1991. Ces propriétés électriques du cerveau sont utilisées pour l'étude de certaines maladies : enregistrement de l'activité générale à partir du cuir chevelu par l'électroencéphalogrammepour rechercher une origine épileptique à une perte de connaissance ; recueil des potentiels évoqués à partir de stimulations visuelles, auditives ou sensitives pour l'étude de maladies inflammatoires.
1.2.3. La neuropharmacologie
La neuropharmacologie associe des méthodes de la biochimie et de la biologie moléculaire, et permet de caractériser les substances chimiques utilisées par les neurones pour communiquer, les neurotransmetteurs, dont près d'une centaine sont aujourd'hui connus. Les acquis se précisent sur la façon dont ces substances sont émises, puis intégrées au niveau postsynaptique : elles se lient à des récepteurs spécifiques qui activent une chaîne d'événements faisant passer le signal de l'extérieur vers l'intérieur des cellules. La neuropharmacologie constitue la base rationnelle des traitements des maladies du système nerveux central par des médicaments qui vont mimer ou, au contraire, bloquer l'action d'un neurotransmetteur donné sur un type de récepteur particulier (→ agoniste,antagoniste).
2. L'anatomie du cerveau
2.1. Un organe fragile
Situé dans le crâne, le cerveau est protégé par les trois membranes constituant les méninges : la dure-mère, l'arachnoïde et la pie-mère. Organe « noble », le cerveau, pour un poids moyen de 1 500g chez un homme adulte, soit 2 % environ du poids corporel, utilise 20 % de l'énergie quotidiennement produite par le métabolisme.
Le cerveau (et l’encéphale dans son ensemble) est en suspension dans le liquide céphalo-rachidien (LCR), ce qui d'une part annule la masse apparente du cerveau (principe de la poussée d'Archimède) et d'autre part le protège des chocs légers contre la cavité dure qui l'abrite, le crâne. Le LCR, qui circule également au centre du cerveau par une série de cavités communicantes, ou ventricules, en sort par les trous de Monro et de Luschka et repasse autour du cerveau et de la moelle épinière avant d'être résorbé. Ce liquide se renouvelle continuellement, et son prélèvement parponction lombaire fournit de précieuses indications sur l'état du système nerveux central, en particulier lors d'épisodes infectieux ou inflammatoires.
2.2. Deux hémisphères et quatre lobes
Le cerveau est partagé en deux hémisphères cérébraux, chacun étant lui-même divisé en quatre lobes (frontal, temporal, pariétal et occipital), par trois sillons accentués. Chaque hémisphère cérébral se compose d'une couche interne, la substance blanche, formée de fibres nerveuses, et d'une couche externe, lasubstance grise ou cortex cérébral, formée en grande partie de corps cellulaires. Les deux hémisphères sont reliés entre eux par deux systèmes principaux de connexion : le corps calleux et la commissure antérieure.
2.3. Les cellules des tissus cérébraux
Le cerveau est composé de quelque 100 milliards de cellules : 10 à 20 % sont des neurones, cellules qui supportent et transmettent l'information ; 40 % sont des astrocytes, cellules gliales impliquées dans le stockage et la libération du glucose destiné aux neurones, ainsi que dans de nombreuses autres fonctions encore mal connues ; 20 % sont desoligodendrocytes, cellules responsables de la synthèse de la myéline, une gaine protéolipidique entourant tel un manchon la fibre principale (axone) de nombreux neurones, permettant ainsi une transmission de l'influx nerveux accélérée de 100 fois ; les 20 à 30 % restants sont composés de multiples types cellulaires, telles les cellules microgliales, support du système immunitaire spécifique du système nerveux central, ou les cellules endothéliales, qui forment les vaisseaux sanguins cérébraux et établissent une barrière hémato-encéphalique particulièrement étanche entre le système nerveux et le reste de l'organisme.
Il s'agit là d'approximations globales, et la proportion des différents types cellulaires varie selon les régions du cerveau. Par exemple, la densité des corps cellulaires et des fibres des neurones est forte au sein de la substance grise qui constitue l'écorce des hémisphères cérébraux, ou noyaux gris centraux, tandis que la substance blanche sous-corticale a une composition restreinte aux oligodendrocytes, aux astrocytes et aux faisceaux de fibres neuronales.
Les neurones et les cellules gliales sont donc les unités de base du cerveau. Ils s'assemblent en sous-ensembles qui déterminent l'activité cérébrale.
3. Fonctionnement élémentaire du cerveau
On peut schématiser le fonctionnement du cerveau en trois compartiments : entrée de l'information, synthèse et comparaison, sortie et action. Les connaissances actuelles concernent surtout les mécanismes d'entrée et de sortie, alors que le traitement central de l'information, qui constitue la majeure partie de l'activité cérébrale, reste encore mal compris.
3.1. Arrivée de l'information
L'entrée dans le système nerveux se fait par des groupes de récepteurs spécifiquement sensibles à une variation du monde extérieur perçue par les organes des sens, ou du monde intérieur, la position du corps par exemple.
Le récepteur peut être le premier neurone lui-même, comme dans le cas de l'odorat, ou n'être qu'en contact étroit avec celui-ci, comme pour les photorécepteurs de la rétine. Ces récepteurs sont particulièrement sensibles aux variations d'un stimulus, c'est-à-dire aux modifications de son intensité, à son apparition ou à son arrêt.
Dans le fonctionnement du système nerveux, qui extrait l'information importante de la masse globale des informations disponibles, ce sont les changements qui sont pris en compte : une odeur nouvelle, une lumière plus ou moins intense; la conscience de cette modification ne dure que quelques instants.
3.2. Traitement de l'information
Après réception par le premier groupe de neurones, l'information est acheminée vers des régions spécialisées du cerveau, où elle sera d'abord perçue puis comparée aux informations de même nature reçues simultanément ou déjà stockées en mémoire. À chaque étape il existe une divergence, un neurone d'entrée en contacte plusieurs, et ainsi de suite jusqu'à ce que plusieurs aires cérébrales participent au traitement des données. Une synthèse est effectuée, et la sortie va se faire au contraire par convergences successives pour aboutir à l'action, par exemple la contraction harmonieuse d'un muscle.
4. Le « cerveau primitif » : hypothalamus et système limbique
L'ensemble hypothalamus-système limbique, souvent considéré comme le cerveau primitif, préside à un grand répertoire de situations et de conduites allant de la faim à la fuite, en passant par la peur et l'attaque. Il arrive toutefois un moment où ces conduites entraînent une interaction avec le milieu extérieur. Chez la plupart des animaux, et particulièrement chez les mammifères, le développement du cortex cérébral correspond à la possibilité de maîtriser les conduites instinctives. Cela permet de les différer dans le temps et d'élaborer ainsi les stratégies d'une meilleure satisfaction des besoins.
4.1. Le rôle de l'hypothalamus
L'hypothalamus est lui-même un ensemble constitué de plusieurs amas de neurones, dont chacun est plus particulièrement responsable d'une fonction. Un premier ensemble de fonctions essentielles est le contrôle d'une petite glande appendue à la base du crâne : l'hypophyse(on parle de complexe hypothalamo-hypophysaire). À travers elle, l'hypothalamus contrôle l'activité des différentes glandes endocrines, depuis la thyroïde jusqu'à la glande surrénale en passant par les glandes sexuelles, ovaires et testicules (→ gonades). Pour ce faire, l'hypothalamus communique par l'envoi de petits peptides, les releasing factors, qui agissent sur l'un des huit types de cellules de la glande hypophysaire. Il contrôle également directement la réabsorption du sel par le rein grâce à la vasopressine que sa partie postérieure sécrète.
L'hypothalamus est aussi à l'origine des comportements et conduites dictés par la faim ou la soif. Lorsque les capteurs situés en son sein ou en périphérie, dans le système digestif par exemple, indiquent une diminution importante des réserves énergétiques, il active un ensemble de relais qui conduisent simultanément à la mobilisation des réserves de l'organisme et à un comportement de prise alimentaire selon des conduites élaborées au niveau du système limbique puis du cortex cérébral ; les neurotransmetteurs impliqués commencent à être connus.
4.2. Le rôle du système limbique
Le terme de « système limbique » est dérivé de la description par Paul Broca d'un lobe situé en bordure intérieure des hémisphères cérébraux. En fait, notre notion actuelle du système repose sur les travaux des Américains J. Papez puis MacLean, qui ont mis en évidence un circuit complexe, très ancien en termes d'évolution des espèces, impliqué dans la naissance et l'expression des émotions. Anatomiquement, il s'agit d'une boucle qui entoure le troisième ventricule et relie des ensembles de neurones aux noms étranges : tubercules mamillaires,amygdale, hippocampe, habénula, accumbens, strie terminale, etc. Le plus important est de savoir que ces ensembles sont intimement connectés et reçoivent de multiples informations venant de tout le système nerveux, et plus particulièrement du cortex cérébral et de l'hypothalamus.
4.2.1. Élaboration des comportements instinctifs
C'est au niveau de ce circuit complexe que s'élaborent certains comportements « instinctifs », comme l'agressivité ou la fuite, mais également des sensations telles que le plaisir, ou, en d'autres termes, la satiété et le contentement. Il existe également une étroite coopération entre le système limbique et l'hypothalamus dans la naissance, le développement et l'élaboration des conduites sexuelles.
4.2.2. Rôle dans l’apprentissage et la mémoire
Le système limbique, et plus particulièrement l'hippocampe (région du rhinencéphale), situé dans la partie interne du lobe temporal, est également un relais essentiel des phénomènes d'apprentissage et de récupération des informations stockées en mémoire. Sa destruction entraîne une perte irréparable de ces deux fonctions. Par ailleurs, il est connu que la qualité de l'apprentissage et de la remémoration est liée aux affects associés aux circonstances de leurs acquisitions : on se rappelle mieux un événement fort, qu'il soit du domaine du plaisir ou de la douleur.
5. Le cortex cérébral
5.1. Les aires corticales
5.1.1. Des zones hautement spécialisées
Le lien établi entre une fonction du corps et une région du cerveau date du début du xixe s., lorsque Franz Gall proposa une liste de 35 fonctions intellectuelles et leur localisation par rapport aux différentes bosses à la surface du crâne. Ces fonctions étaient aussi curieuses que la générosité, l'amour pour sa mère ou la pulsion destructrice. Cette théorie (la phrénologie) connut un grand succès populaire – on parle encore aujourd'hui de la « bosse des maths » –, mais fut réduite à néant par les scientifiques de l'époque, jusqu'à ce que Brocadémontre qu'il existe une part de vérité dans la proposition de Gall. En autopsiant des patients, Broca établit des relations de coïncidence entre certaines lésions du cerveau et le(s) déficit(s) neurologique(s) que présente le malade.
5.1.2. Une répartition asymétrique
Si l'organisation générale du cerveau est commune aux mammifères, et si la commande motrice, par exemple, est peu différente chez le rat ou le chat, des fonctions telles que le langage ou la mémoire sont plus développées chez l'homme que chez tout autre animal. Les aires concernées du cortex cérébral présentent un hyperdéveloppement et une spécialisation. Ces fonctions sont qualifiées de « fonctions supérieures » du cerveau. Leur répartition est asymétrique entre les deux hémisphères, comme est asymétrique la préférence pour l'usage de la main droite ou de la main gauche. Contrairement à la signification héritée du xixe s., « asymétrique » ne veut pas dire qu'il existe un hémisphère dominant et un hémisphère mineur. La préférence manuelle et les différentes fonctions concernant le langage sont plutôt situées dans le cortex de l'hémisphère gauche, tandis que l'hémisphère droit est plus spécialisé dans la reconnaissance des formes et des sons : à gauche une logique fondée sur le langage, à droite une logique reposant sur les émotions.
5.1.3. Cortex moteur et cortex sensoriel
Les vastes zones dévolues aux fonctions premières de perception de l'information et à la commande motrice sont symétriques et croisées, l'hémisphère gauche recevant les informations issues de l'hémicorps droit et inversement. Le cortex moteur, origine de la commande volontaire des muscles, est situé en avant de la scissure de Rolando, en un arc allant d'une oreille à l'autre. Le cortex sensoriel primaire lui est parallèle, en arrière de la scissure de Rolando ; il reçoit les différentes informations tactiles ainsi que la sensation de température de l'ensemble du corps. Le cortex occipital, situé à l'arrière du cerveau, reçoit les informations visuelles primaires. Le cortex temporal réunit les aires de réception auditive. Enfin, les perceptions olfactives sont acheminées vers la base des lobes frontaux.
5.2. Cerveau et mouvement
5.2.1. L'aire motrice de Broca
Sur la base de ses expérimentations, Paul Broca reconnaît que l'aire motrice, région du cortex cérébral, commande les mouvements de la partie contralatérale du corps (hémisphère droit pour l'hémicorps gauche et inversement). En fait, cette région essentielle n'est que la voie de sortie finale de commande du mouvement ; celui-ci requiert, dans sa préparation et son exécution, la participation de multiples autres régions cérébrales au niveau du cortex (les aires préfrontales) et au niveau sous-cortical (les noyaux gris centraux et le système cérébelleux, ainsi que le tronc cérébral et la moelle épinière). Mis à part les infarctus sylviens superficiels, presque toutes les maladies du mouvement, comme la maladie de Parkinson, sont dues à des atteintes des noyaux gris, du cervelet ou de la moelle épinière..
5.2.2. Les deux systèmes de commande du mouvement
Depuis les travaux de Sherrington au début du xxe s., il est habituel de diviser le mouvement en deux étages : médullaire (à partir de la moelle épinière) et cérébral. Il existe au niveau médullaire un système de génération rythmique du mouvement qui repose sur la présence de capteurs dans le muscle. Les uns, sensibles à l'allongement, déclenchent en réponse un réflexe de contraction musculaire pour s'y opposer. Les autres, sensibles à la tension, répondent en inhibant le motoneurone innervant le muscle. Ces deux systèmes assurent de façon spontanée la stabilité du muscle par rapport à une situation de référence : c'est ainsi que nous tenons debout même si nous ne marchons pas, ou que nous restons assis sans nous écrouler comme une poupée de chiffon (→ arc réflexe). Le système de commande central va venir moduler le générateur médullaire.
5.2.3. Le cortex moteur
C'est grâce aux travaux de J. H. Jackson, vers 1870, puis de Betz quelque temps après, et enfin de Penfield dans la première moitié du xxe s., que le rôle précis et la répartition du corps humain dans le cortex moteur (l'homunculus) ont pu être compris. Une des caractéristiques majeures de cette répartition est la disproportion entre la taille des aires corticales et la topographie corporelle contrôlée : une partie très étendue du cortex est dévolue au seul contrôle de la main et de la face.
Ce cortex moteur n'agit pas seul : il coordonne et finalise une programmation du mouvement qui met en jeu d'autres aires cérébrales. Plusieurs structures sont en interaction : le cortex sensitif , pariétal, reçoit les différentes informations sensitives issues du corps ; le cervelet participe au déclenchement du mouvement et à la facilitation de mouvements préprogrammés ; enfin les noyaux gris centraux (ou noyaux gris de la base), ensemble de structures sous-corticales interconnectées, sont impliqués dans l'anticipation et le contrôle de l'exécution du mouvement ainsi que dans certaines fonctions émotionnelles.
Le rôle des noyaux gris centraux
Schématiquement, les noyaux gris comprennent la substance noire, le striatum (caudéputamen), le pallidum, les noyaux sous-thalamiques et le thalamus. L'entrée de la boucle se fait au niveau du striatum, à partir d'informations issues du cortex cérébral. Puis l'information est dirigée vers les noyaux sous-thalamiques et la substance noire avant de revenir vers le striatum et de sortir vers le thalamus via le pallidum.
À partir du thalamus, l'information rejoint le cortex moteur. Au cours de cette boucle, diverses intégrations s'effectuent pour préparer le corps à réaliser le mouvement de façon harmonieuse, non saccadée comme le ferait un robot ou un automate, et corriger sa posture, pour éviter par exemple de tomber en avant lors du soulèvement d'un objet lourd placé devant lui. Les maladies touchant ces noyaux provoquent des mouvements anormaux, comme dans la chorée de Huntington ou les tremblements dus à la maladie de Parkinson.
5.3. Les aires du langage
C'est à Broca que nous devons la première description d'une perte du langage, ou aphasie, liée à une lésion latérale du lobe frontal. Il mit également en évidence que l'aphasie ne survient que lors d'une atteinte de l'hémisphère gauche, tandis que la même lésion du côté droit ne semble à l'origine d'aucun trouble. Cette aire antérieure du langage, située immédiatement en avant de la région du cortex moteur qui gouverne les muscles de la face, de la langue et de la gorge, est aujourd'hui appelée « aire de Broca ». Toutefois, la perte du langage n'est pas due à une simple perte de la motricité d'une hémiface, sinon la même lésion à droite provoquerait le même trouble. C'est la fonction « parole » qui est concernée, et le muscle de la face impliqué s'active très bien lors d'une autre fonction comme le sourire. Quelques années après Broca, Carl Wernicke décrit une autre perte du langage due à une lésion, ici encore de l'hémisphère gauche mais beaucoup plus postérieure, située sur la partie supérieure du lobe temporal. Cette aire, adjacente au cortex auditif primaire, ou aire de Wernicke, est en communication avec l'aire de Broca grâce à un faisceau de fibres nerveuses.
5.3.1. Les aphasies de Broca et de Wernicke
L'aphasie due à l'atteinte de l'une ou l'autre aire n'est pas de même nature. Celle de Broca est dominée par une réduction de la parole à quelques mots, voire à un seul, répétés inlassablement et d'une articulation difficile et lente. Il existe une perte plus ou moins complète de la grammaire et de la syntaxe, le style devient télégraphique. Lorsque le langage se limite à un seul mot ou bribe de phrase, on peut croire qu'il s'agit du dernier mot auquel a pensé le patient avant l'infarctus cérébral généralement cause de ces troubles. Certains mots célèbres sont souvent cités, comme celui du poète Valery Larbaud répétant jusqu'à la fin de sa vie : « Adieu les choses d'ici-bas, adieu les choses d'ici-bas, adieu les choses… »
L'aphasie de Wernicke s'oppose presque point par point à celle de Broca. La parole est facile, presque impossible à interrompre, et les mots s'enchaînent en phrases interminables, mais qui ne veulent rien dire. Il reste la musique de la phrase et des mots, mais ils n'ont aucun sens les uns par rapport aux autres.
Sur la base de ces deux aphasies, des deux aires cérébrales correspondantes et du faisceau les reliant est née la première théorie du langage, qui reste encore valable aujourd'hui : l'aire de Wernicke est la région de structuration et d'émission du langage, qui est transmis vers l'aire de Broca où se font la coordination syntaxique et la mise en place de l'articulation transmise à la région motrice primaire adjacente.
5.3.2. Parole versus compréhension du langage
En fait, l'aire de Wernicke est plus encore le centre de reconnaissance des mots, quelle que soit la forme sous laquelle ils sont perçus. Lors du langage oral, le mot est perçu au niveau du cortex auditif puis transmis à l'aire de Wernicke ; il en est de même pour un mot écrit, perçu d'abord par le cortex visuel primaire comme un motif graphique, puis transmis au gyrus angulaire, situé à la jonction des lobes temporal, occipital et pariétal, avant d'être reconnu en tant que mot par l'aire de Wernicke adjacente. Ainsi, si l'aphasie de Broca ne concerne que la parole, celle de Wernicke entraîne une perturbation importante de toutes les composantes de compréhension du langage.
Cette présentation de la fonction « langage » restreinte à deux aires du cortex cérébral permet de comprendre nombre de troubles aphasiques. Il existe toutefois d'autres régions cérébrales qui participent à la compréhension et à l'élaboration du langage. Latentes ou peu actives à l'état normal, elles facilitent la récupération souvent importante après un accident vasculaire, en particulier pour les aphasies de Broca. Ce sont les régions immédiatement adjacentes aux zones détruites et leurs correspondantes dans l'hémisphère droit, en particulier chez le gaucher.
6. Le développement embryonnaire du cerveau
Comment cette incroyable machinerie de plusieurs centaines de milliards de cellules, connectées entre elles de façon précise et reproductible, se met-elle en place d'un individu à l'autre ? C'est l'un des sujets les plus brûlants de la neurobiologie actuelle, car il ouvre non seulement sur une meilleure compréhension de notre cerveau, mais également sur la connaissance de nombreuses maladies liées à des anomalies de l'organisation cérébrale.
L'origine du système nerveux se situe dans une couche de cellules situées sur la partie dorsale de l'embryon, la plaque neurale. Ce tissu se creuse en une gouttière, le tube neural, d'où se différencient trois excroissances qui donneront les trois compartiments cérébraux : télencéphale (futurs hémisphères et structures sous-corticales), mésencéphale (futur tronc cérébral), rhombencéphale (avec l'ébauche du cervelet). Au-delà des observations morphologiques, c'est la compréhension du programme – déterminant la différenciation des neurones et des cellules gliales, leur migration vers leur place définitive, ainsi que les formations des connexions spécifiques – qui constitue le sujet d'étude des neurobiologistes du développement.
6.1. Le programme de développement du système nerveux
Ce programme comprend 8 stades : l'induction de la plaque neurale, la prolifération cellulaire, la migration des cellules vers leur emplacement définitif, leur agrégation en structures identifiables dans le cerveau, la différenciation des cellules immatures en cellules matures, l'établissement de connexions, la mort de certaines cellules (→ apoptose) et l'élimination de certaines connexions.
En fait, lors de la vie embryonnaire et chez le jeune enfant, certaines de ces étapes se superposent et sont décalées dans le temps selon le type cellulaire et la région cérébrale concernée. Par exemple, les oligodendrocytes ne se différencient qu'après la naissance, et la myélinisation (synthèse de la myéline pour favoriser la conduction de l'influx nerveux) ne se fait qu'au cours des premiers mois de la vie.
Autre exemple, une structure comme le cervelet ne se développe réellement qu'après la naissance, et de nombreux neurones continuent à se multiplier au niveau de sa couche la plus superficielle durant les premières semaines de la vie.
Un développement lent et long du système nerveux, caractéristique essentielle des mammifères, permet un apprentissage particulièrement important, qui trouve sa plus grande expression chez les primates, et bien sûr de façon encore plus développée chez l'homme.
6.2. Sélection de cellules nerveuses et stabilisation
Initialement, le nombre de cellules et de contacts synaptiques est très supérieur à celui existant à l'âge adulte. L'un des principes du développement cérébral, la stabilisation sélective, repose en effet sur la sélection de certaines cellules et de certains contacts intercellulaires. Sélection et stabilisation sont génétiquement programmées, mais la détermination finale de la cellule sélectionnée ou du contact stabilisé est le fruit des interactions avec l'environnement, de l'apprentissage sous toutes ses formes.
Dans la construction du cerveau, l'épigenèse (théorie du développement embryonnaire par différenciations successives) a le dernier mot. Il existe également dans le système nerveux central adulte des possibilités de régénération et de plasticité. Découverts récemment, ces phénomènes semblent être, chez l'adulte, sous le contrôle de mécanismes multiples et complexes où les éléments inhibiteurs semblent prédominer, pour maintenir une certaine stabilité du système. Les avancées actuelles de la biologie moléculaire et de la modélisation théorique des systèmes devraient permettre de mieux comprendre ces phénomènes.
6.3. Les molécules intervenant dans le développement du cerveau
Au cours des années 1980, trois découvertes sont venues éclairer les mécanismes qui président au commencement et au développement des différentes étapes du programme : les facteurs de croissance, les molécules d'adhésion et les gènes dits homéotiques. C'est la combinaison de ces éléments et d'autres – qui restent probablement à découvrir – ainsi que leur enchaînement au cours du temps qui déterminent l'entrée dans chaque étape et sa réalisation.
Schématiquement, les gènes homéotiques constituent une famille présentant une séquence d' ADN commune, l'homéoboîte. L'activation de ces gènes va déterminer le devenir de la cellule, neurone ou cellule gliale, neurone du mésencéphale ou neurone du cortex cérébral, selon un programme, ou enchaînement, spécifique de l'espèce.
Les molécules d'adhésion vont permettre aux cellules de même nature de se reconnaître entre elles, de se regrouper et de délimiter des structures.
Enfin, les facteurs de croissance sont les molécules chimiques privilégiées de communication entre les cellules au cours du développement. Le rôle de ces molécules, présentes à un faible niveau dans le cerveau adulte, est mal connu mais pourrait être nécessaire à la survie de certains neurones.
6.4. Les mouvements animant les cellules cérébrales
Grâce à des marqueurs radioactifs telle la thymidine tritiée, le processus de mise en place des cellules cérébrales a pu être suivi. Les grands neurones qui envoient des prolongements à distance sont formés avant les petits. Dans le cortex cérébral, les premières cellules à arrêter leur division sont situées dans la couche la plus profonde, et plus les autres cellules l'arrêtent tardivement plus elles occupent des couches superficielles ; il existe donc une phase de migration.
Au début des années 1970, P. Rakic (1937-2003) a particulièrement bien décrit, pour le cortex cérébral, la séquence d'événements durant cette migration, et sa démonstration a depuis été étendue à l'ensemble du système nerveux. Comment un neurone « sait »-il se diriger et s'arrêter pour former un agrégat ? Certaines cellules gliales spécialisées (glie radiaire) forment des sortes de rails qui guident les neurones vers leur place définitive. Chez des souris mutantes, où la glie radiaire dégénère précocement, la migration neuronale est anarchique.
Il existe, enfin, des périodes critiques pour la mise en place d'une connexion donnée. D. Hubel et T. Wiesel ont montré, par exemple, que les circuits qui permettent la vision dépendent étroitement de l'activité de l'œil pendant les premiers jours du nouveau-né. Une privation de lumière au cours de cette période provoque la perte de la capacité visuelle, alors même que la rétine et tout l'appareil perceptif sont intacts. La même privation quelques jours plus tard est sans effet, la période critique de stabilisation du circuit étant passée.
7. Aspects médicaux
7.1. Examens du cerveau
Le cerveau est exploré, comme le reste de l'encéphale, par l'imagerie radiologique, le scanner et surtout par l'imagerie par résonance magnétique (I.R.M.) mais aussi par les caméras monophotonique (SPECT) ou à positons (PET). Ces méthodes très performantes ont supplanté l'électroencéphalographie (enregistrement de l'activité électrique de l'encéphale), technique plus ancienne.
7.2. Pathologies du cerveau
Le cerveau peut être atteint par les mêmes affections que le reste de l'encéphale : traumatismes crâniens, accidents vasculaires cérébraux(obstruction ou rupture d'une artère cérébrale), tumeurs bénignes ou malignes, encéphalites, infectieuses (souvent virales) ou non, abcès, intoxications diverses, maladies dégénératives (maladie de Parkinson,maladie d'Alzheimer, sclérose en plaques), maladies congénitales chromosomiques (trisomie 21). Les maladies psychiatriques proprement dites ne correspondent à aucune lésion connue ; toutefois, la dépression ou la schizophrénie peuvent avoir une origine métabolique.
En pathologie cérébrale, on distingue deux types de signes.
Les signes non spécifiques sont les mêmes, quelle que soit la localisation de la lésion. Il en est ainsi des maux de tête, des convulsions, des crises d' épilepsie (mouvements saccadés avec perte de conscience), de l' hypertension intracrânienne (augmentation de la pression du liquide céphalorachidien), du coma.
Les signes de localisation, en revanche, donnent une indication sur la zone atteinte, reflet de la fonction spécifique de chaque territoire. Ainsi, les lésions du lobe frontal provoquent, selon leur siège, soit la paralysie croisée d'une moitié du corps (hémiplégie), soit des troubles de la personnalité et du comportement (apathie, négligence de soi), de l'humeur (dépression, euphorie) et des facultés intellectuelles. Elles peuvent également provoquer des troubles de la parole articulée (aphasie), de l'écriture ou une perte de la compréhension du langage. Les lésions pariétales sont responsables d'un trouble des mouvements volontaires, l'apraxie (le sujet n'arrive plus à effectuer le geste qu'on lui demande ou à manipuler un objet alors que la force musculaire est normale), et d'une agnosie tactile (le sujet ne reconnaît plus les objets au toucher alors que les organes sensoriels fonctionnent parfaitement). Les lésions occipitales sont à l'origine d'une agnosie visuelle (le sujet est incapable d’identifier ce qu'il voit).