- L'Univers rescelle-t-il un nombre restreint de lois simples, cachées à nos yeux, mais accessibles avec notre technologie de plus en plus sophistiquée ?
- Ou l'Univers est-il infiniment complexe, inconnaissable dans son essence, et ne nous livrant que des bribes de connaissances partielles. Nous serions ainsi tel un spectateur ne connaissant le monde que par des ombres chinoises projetées (le mythe platonicien de la caverne, vous connaissez?)
- la multiplicité des matériaux naturels (métaux, pierres, liquide...) a été expliqué par la théorie atomique et toute la matière a trouvé ses briques de bases dans le tableau périodique des éléments.
- Les atomes et les nombreuses particules découvertes avec l'aide des collisionneurs ont été disséquées, classifiées et réduites à un petit nombre dans le Modèle Standard.
- Newton a expliqué en 1687 que la force d'attraction astronomique et la gravité terrestre ne sont qu'une seule et même interaction dite gravitationnelle.
- Après Oersted, Maxwell a expliqué en 1873 que le magnétisme, l'électricité et la lumière ne sont que les manifestations différentes d'une seule et même interaction dite électromagnétique.
- l'approche synthétique: les interactions observables par les physiciens ne seraient que les aspects différents d'une seule et même force originelle (la Superforce!) accessible qu'à de très hautes énergies.
- l'approche historique: Toutes les interactions étaient unifiées à la naissance du monde (le fameux big bang), mais elles se sont différenciées depuis .
Nous allons donc découvrir les différentes étapes de cette unification des forces, puis découvrir avec émerveillement la naissance du monde avec le big bang...
Notre Modèle Standard ne décrit donc au final que 4 interactions?
Faux. En réalité, et depuis 1967, les interactions faibles et électromagnétiques ont été unifiées par la théorie de l' interaction électrofaible.
Les interactions sont modélisées par les mathématiques sous forme de champ de forces ayant une "symétrie de jauge".
Sans rentrer dans le détail et pour vous éviter un bonne migraine, disons que cette symétrie de jauge est "un groupe de transformations mathématiques pour lesquelles la dynamique des particules est invariante". |
L'important ici est de comprendre que nos prix Nobel de Physique démontrèrent que les champs de jauge de l'interaction faible étaient structuralement identiques aux champs électromagnétiques. Or la symétrie qu'invoque la théorie électrofaible imposerait 4 bosons médiateurs de masse nulle: le photon, le Zo et les deux W.
Ceci est en contradiction avec les faits. En 1983, Carlo Rubbia a bien découvert au CERN les bosons Zo et W prévus par la théorie, mais ces derniers avaient une masse (prévue!), et même une masse énorme de l'ordre de 90 fois celle du proton!
Les physiciens sont des malins et ils inventèrent donc un nouveau champ de force appelé champ de Higgs (du nom du physicien écossais Peter Higgs) se manifestant par l'intermédiaire d'un mystérieux boson appelé evidemment boson de Higgs. Ce champ n'agit qu'avec les bosons intermédiaires Zo, W- et W+ pour leur donner une masse, mais ne se couple pas avec le photon, préservant ainsi sa masse nulle. Une fois que le champ de Higgs s'est manifesté, les deux interactions, électromagnétique et faible, se distinguent l'une de l'autre. on dit qu'il y a brisure de symétrie.
Dès lors que ce mécanisme de Higgs est introduit dans les équations, la théorie électrofaible fonctionne parfaitement bien. Elle a permis de prédire, avec précision, la masse des bosons intermédiaires bien avant leur découverte par Rubbia.
La découverte du boson de Higgs nécessite en effet des énergies énormes de l'ordre de 100 GeV (GigaélectronVolts). Seul le futur LHC sera capable de recréer en son sein un environnement d'une telle densité d'énergie. Or c'est à cette échelle énergétique que les physiciens pourront peut-être observer l'apparition du boson de Higgs, puisque ces100 GeV correspondent à sa masse estimée (n'oubliez pas E = mc² !).
Il nous reste les interactions gravitationnelles, fortes et électrofaibles.
La théorie de l'interaction électronucléaire est aussi nommée Théorie de la Grande Unification ou TGU (ou GUT en anglais). Elle unifie l'interaction forte et électrofaible.
La symétrie de la GUT permet l'invariance de la nature par permutation d'un lepton (électron, neutrino...) avec un quark: En clair, les leptons et les quarks du quintuplet seraient transformables les uns avec les autres, et ces transitions pourraient être possible par l'intermédiaire de nouveaux bosons appelés des leptoquarks. Ces leptoquarks seraient ainsi des bosons porteurs d'une charge de couleur et d'une charge électrique fractionnaire.
Cette théorie permettrait d'expliquer le fait troublant que la valeur de la charge électrique négative (Q= -1) d'un électron corresponde à la même valeur (Q= +1) du proton.
D'énormes piscines-détecteurs de désintégration de proton ont donc été construites: Un proton émet deux photons g et un positron e+ en se désintégrant; or le positron émet un cône lumineux bleu dans l'eau (effet Cerenkov pour les connaisseurs) que des photo-multiplicateurs peuvent détectés. Hélas, pour le moment, aucun résultat positif n'a été annoncé, ce qui rend cette théorie GUT bien moins solide que la théorie électrofaible.
La théorie GUT pourrait donc unifier toutes les interactions excepté la gravitation.
La théorie qui inclurait la gravitation dans une superforce existe: elle s'appelle la "théorie de Tout". C'est le rêve des physiciens...
Aucun commentaire:
Enregistrer un commentaire